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THEORY OF FLAME PROPAGATTON*

By Y. B. Zeldovich

The mechanism of flame propagation has been qualitatively
formulated. In accordance with this formulation, the chemical
reaction initiated in some layer brings about an increase in the
temperature; because of the heat conduction, the temperature is raised
in the neighboring layer where in turn the chemical reaction is ini-
tiated. In this manner the flame is propagated.

Michelson (reference 1) is credited with presenting the first
reliable method for measuring the flame speed and for computing the
temperature distribution in the preheated zone of burning gas. In
various papers on the theory of the speed of combustion (Jouguet
(reference 2), Nusselt (reference 3), Daniell (reference 4), and
others), a solution is found only by making simplifying assumptions
that do not correspond to the actual conditions. The comparatively
unknown work of Taffanel (reference S) is the most similar to present-
day views.

In the work of Jost and von M&ffling (references 6 and 7), Sachsse
(reference 8), and particularly Lewis and von Elbe (reference 9), a
method is formulated that is satisfied by theory, that is, the d4if-
fusion as well as the heat conductivity is considered, the concept of
ignition temperature is not included, and the continious dependence of
the speed of reaction on the temperature and concentration is taken
into account.

This method was first carried out in the work of D. A. Frank-
Kamenetskii and the author (reference 10), in which an approximate
method is given for the computation of the flame speed under definite
rational assumptions concerning the chemical reaction and the constants
of the explosive mixture.

The experimental work carried out at the Institute of Chemical
Physics (reference 11) confirmed the validity of the theory.

In accordance with what has been previously stated, a more strict
consideration of the problem, appears desirable, that is, an explanation

*"K Teorii Rasprostranenia Plameni." Zhurnal Fizicheskoi Khimii
(UsSR), T. 22, 1948, pp. 27-49.
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of those general conditions that must be satisfied by an explosive
mixture for the possible existence of the phenomenon of flame propa-
gation; determination of a general method of computing the flame
velocity for an arbitrary relation among rate of reaction, tempera-
ture, and concentration; and finally, determination and evalua-

tion of the errors of the aforementioned approximate method (refer-
ence 10).

The present paper bears greater resemblance in its form to a
mathematical than to a physicochemical investigation. The subject,
however, is actually the physicochemical problem of the conditions
under which the chemical reaction proceeds during combustion. The
theory developed permits studying the rate of the reactions occurring
at temperatures of 1500 to 3000°.C for a time of the order of a
millisecond to enable the measurement of the flame velocity. The
mathematical apparatus provided is not complicated; the computation
work is simularly not extensive particularly if it is compared with
the difficulty of the direct experimental realization of the indepen-
dent combustion of the gas and the direct measurement of the rapid
homogeneous reaction under conditions approximating the flame
conditions.

At the present time, investigations are being conducted and
prepared for publication that concern concrete chemical systems that
will extend our knowledge of the kinetics of the most important
reactions to the region of high temperatures; and will provide a
clear picture of the process of combustion of such propagated explo-
sive mixtures as carbon monoxide - oxygen -~ nitrogen. Accordingly,
a review of the present state of the theory that presents not only
the final results but the entire basis of the theory, emphasizing
the fundamental physical problems of the existence and properties
of the solution in the general case, would seem desirable.

1l. Equations of Heat Conductivity and Diffusion in a Flame

A two-~dimensional flame is considered and the equation of heat
conductivity giving the distribution of the temperatures and the
equation of diffusion giving the distribution of the concentrations
are set up; the total number of equations of diffusion is equal to
the number of reacting substances and the products of the reaction.
Only one equation of diffusion is written for the reacting substance
of which there is a deficiency in the explosive mixture. In con-
trast to the classical problems of heat conductivity and diffusion,
the liberation of heat and the consumption of the reacting substances
that depends on the process of the chemical resction are considered
in the equations.
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The following symbols are used;

t . time, (sec)

x coordinate, x-axis perpendicular to plane of fla@é,.(cm) »
p density of mixture, (g/cms)

u velocdity of motion along x-axis, (cm/sec)

T temperature, {deg)

c specific heat at constant pressure, (cal/(deg)(g))

k heat conductivity, (cal/(cm)(sec)(deg))

a relative concentration of reacting substance in grams of
substance per one gram of mixture (nondimensional)

D coefficient of diffusion, (cmz/sec)
¢ veloéity of chemical reaction, (g/(sec)(cms))
h thermal effect of reaction, (cal/g)
'S constant of thermal diffusion (nondimensional)

The eguation of heat conductivity has the usual fornm

oT o oT oT
pe 3 5 k = upce = + h¢ (1)

The eguation of diffusion may be written

da _ O da Dpa  OT | da
== = . Dp == + == . == - == -
°3 = [ =T T Bx] e ox (2)

With change in temperature, the density of the gas is found to
change greatly. The composition of the mixture is characterized
by the magnitude a. The absolute value of the concentration, equal
to ap (g/cm3), changes because of gas expansion, diffusion, and
reaction.

~ In eguation (2) only processes that change the composition
are considered and the expansion 1s excluded. The magnitude Dp (3a/dx)
represents the mass flow of the substance carried along by the dif-
fusion; in an isothermal diffusion, the flow is generally conkidered
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to be proportional to the gradient of the absolute concentration
pa, that is, in the case D @(pa)/a . TIn this case, however,
the density p 1is practigally constant and whether the mass flow
is written as D B(pa)/afl or Dp(d2/dx) is immaterial. In

the nonisothermal case, the second form must be definitely chosen
because, in the absence of thermodiffusion (separately considered
by the second term y(Dpa/T)(dT/dx)) in a mixture of constant
composition, there is no diffusive flow; that is, the flow is equal
to 0 for a = constant, even if pa  constant in this case.

Equation (2) may be obtained by a transformation of the equation
for the absolute concentration

9 (pa) = 2 <Do§§+79@-a—T->-u—a—(pa)—pa§.‘_‘-¢ (3)
X ox ox T ox X ox

by considering the equation of continuity
= =-u—-p= (2)

The magnitude ¢ represents the rate of consumption of the
substance in the process of the chemical reaction; the rate of
heat liberation in unit volume is equal to hd. ¢ 1is a function
¥a,T) where $ =0 for a = O.

By considering the propagation of the flame, the velocity
of motion of cold gas ug is sought for which the flame front is
stationary and the entire distribution of T and & 1is independent
of time. It is evident that ug is equal to the velocity with
which the flame is propagated over the stationary cold gas but it
is more convenient to consider the flow and the distributions of
T and a as being independent of time. As the temperature rises
in a gas flow, p drops and u increases in such a manner that
the product pu is constant at any point and equal to Poto*
In equations (1) and (2), the left side (J/dt) 1is equal to O;
the symbol B/Bx is replaced by d/dx. The following boundary
conditions are imposed on T(x) and a(x):

.
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(vecause for a # O and ¢ £ 0, the condition a = constant # O does
not satisfy the equation).

It is likewise evident that for x = t&

Z.2o (5")
dx dx

. 2. General Properties of Temperature Distribution

The general properties of T(x) are found by integrating with
respect to x from -o to 4 in both egquations.

L e E i ng=o0 (6)
ax  dx dx
4 DQ§E+7DE§.‘1_T>-up@—¢=O (7)
ax ax T dx ax
By setting T(+e) = Top,
+oo
upe (Tz - Ty) = h|  dax (8)
~—
+ox
upay = $dx (9)
-0
ha
0 1
Tp= To+ & (10)

Equation (10) agrees with the result of the elementary computation

of the combustion temperature by the energy balance. By considering

equation (6), it is shown that T cannot pass through a meximum

higher than T2 because ®$0; on the curve passing through the

maximum, however, daT/dx< 0 and (d4/dx)(kdT/dx) > 0, which according
, to equation (B6) requires @ < O.

In reference 1, incorrect assumptions are encountered, that is,
for a rapid reaction of the gas heated to a certain temperature
TB higher than T,, a sudden increase in temperature occurs and

L1 the case of variable ¢, set H = J‘T cdT.
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the following temperature is attained;

= agh
L

higher than To = Ty + aOh. Actually, if ¢ is very large in a

c
very narrovw layer so that L[‘@dx is finite, then dzT/dx2 in this

layer is very large, that is, in the limit as ®-» o, the magnitude

dT/dx undergoes a discontinuity but T is continuous; an angle appears
on the temperature-distribution curve (fig.l). It is also evident

that the converse is really true; namely, that at all points at

which ¢ is finite or equal to 0, not only T but also dT/dx

cannot undergo a discontinuity.

3. Relation Between Concentration and Temperature in Mixture of
Gases of Approximately Same Molecular Weights

A mixture of gases of nearly the same molecular weights is next
considered. In this case, it follows from the kinetic theory that

practically no thermodiffusion occurs (v = 0) and that the dif-
fusion coefficient is related to heat conductivity by the expression2

k = coD (11)

The variable H is introduced (heat content or enthalpy), uniquely
related to T as follows:
E ijz cdT

dH = cdT

(12)

2pt room temperature, the heat conductivity of oxygen is
5.9 X 10’5, nitrogen is 5.2 X 10'5, carbon monoxide is 5.1 X 107,
and hydrogen is 40.7 X 10=°. The product cpD for diffusion of
oxygen - nitrogen is 5.8 X 10'5, hydrogen - oxygen is 23 X 10'5,
hydrogen - nitrogen is 21 X 10’5, and hydrogen - hydrogen is

38 X 10-5.
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The equations of heat conductivity and diffusion assume the similar
forms

'_cL_;gH_ungth@_o  (13)

1
dx c dx
L4 kda ypda_g =0 (14)
dx c dx ax
from which
d kx 4 d
~—— === (H+ 8h) ~-up— (H+ ah)= 0 15
=22 (H+ eh) - up = (H + ah) (15)

thus, by considering the boundary conditions (5') that will give

-9-(H+ah)=0forx=+°° (15')
d.x -—
the unique solution

H + sh = constant = Hy + agh (16)
X = -o ™
H = Hy
a = ag (17)
X =+ ™
a=0
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The concentration is found to be uniquely related to the temperature
(in the case of constant specific heat linearly: eT + ah = constant
= cTO + aoh) in such a manner that the total energy3 of a unit mass;

the sum of the thermal and chemical energies is constant.

Lewis and von Elbe (reference 9) were the first to postulate
the constanecy of the total energy in all the intermediate layers in
the flame by the assumption of a chain reaction that is brought
about by the diffusion of active centers. From the previous dis-
cussion, it is evident that the constancy of the energy depends
not on the mechanism of the reaction but on the ratio between the
diffusion of the fuel and the heat conductivity of the mixture.

As will be shown, the total energy is not constant for Decp # k
in the region of combustion, but has a maximum or minimum value.

In considering the case Dcp = k, the velocity of the reaction
¢ (a,T) may be expressed for known ag, Tg as a function of one
variable magnitude a or T, or H because of the relation among
the composition of the mixture, the temperature, and H.

The problem thus reduces to the consideration of the one equation

4 kdE -y dH + h¢(H) = 0 ' (18)
dx ¢ dx dx

in which ®(H) 1is obtained from ¢(a,T) by the substitution of

T and a from equations (12) and (16) so that for H = Hoy, ¢ =0
because for H = Hp, a = 0. Equation (18) may be solved under
boundary conditions (17) and

¥ = - \

H = Hy

X=+o } (18a)
H-"—Hz )

SMore accurately, the enthalpy (heat content) because the com-
bustion occurs at constant pressure., See definition of C.

2040
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The product up 1is a constant magnitude'that cannot, however, be
considered as known; it is necessary to determine that value of up
-for which -the equation has a solution satisfying the boundary
conditions.

4, Condition of Existence and Uniqueness of Solution

The following nondimensional variables and parameters are
introduced?:

Ha - Hp
aH
y=£k x
¢ \/I (E2 - Hop) <¢l€)
€/m ? (19)
o=
P(z) = <
k
<¢’35m
m = up = unp
1 k
m an <¢c£L1 J

Hy - Hy

where ¢nﬂ Kﬁ, Cm are constants independent of a, H, and other
magnitudes varying in the flame front. All finite results of the
computations, particularly the magnitude of the veloeity u, do
not actually depend on the choice of @np Knp» @and Cp. Because
3
o~P, 5 it is found from equation (20) that m~®p
1
the velocity u~ mqnz does not depend on an; hence, the choice

1
2 and that

drhis convenient system was proposed by S.M. Fainberg in con-
nection with work on the combustion of ozone.
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of ¢nﬁ Cm’ and Km is arbitrary. For example, set
Kp=k (a=0, T=Ty)
Cph=C(a=0, T=T,) (192)

®m = @(aO,TZ)

It is noted that for Decp = k,

ol

By substituting and noting that

4
dH

&

4
ax

the following eguation is obtained in place of equation (18):

y%+my- ¢(z) =0 (20)
with the boundary conditions
z =20 h
y=0 } (21)
z =1 |
y=0

The conditions of the existence of a solution are considered. In
the plane z,y the line y; = ®(z)/m is drawn on which dy/dz = 0

(fig.Z)S. For y< ¥y, dy/dz > O. From this condition it is evident

Syl is not the integral curve of equation (20) but only one of

the isoclinal equations.

LpTal Nal
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that if @(z) > O in the entire interval Og z< 1, the curve
~satisfying the condition y = 0, z = 0 lies everywhere asbove the
axis of abscissas and never (for any m) falls on the point

z=1, ¥y = 0, Thls condition exists because near the point

z =1, y= 0, dy/dz > 0 and there are no curves from the region
z< l, y >0 that pass through this point. Hence, in order that
a solution exist, it is necessary that @ becomes O for z< 1.

The case considered first is where an even more strict condi-
tion is satisfled.

p(z) = 0 for z > B, where B<1 (22)
(Note fig. 3.) Also, let @(z) >0 for =z < B. The existence

and uniqueness of the solution will be proven. The general theorems
on the uniqueness of solution of a given differential equation are
insufficient because the value of the coefficient m must be found.

Consider Yy (z,m), a function of two variables, as satisfying
constant m of eguation (20) and the boundary condition y (O,m) = O.
The following equation is set up;

dy
Ym = 3n (23)
By dividing eguation (20) by y and differentiating with respect
to m
\
A¥p @ (z)
+ Yy = =
2 “‘m
dz [y (z, m)] }
(24)
z = 0
y =0 y

In the region O0< 2z B, >0 and y> 03 it follows that Yy < 0.

Set
-¥m (Bsm) = ¢ (25)
In the region B €z <1, dy,/dz =~ 1 so that
~¥p (L, m)=¢+(1-B)>1-8 (28)
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Hence, dy/dm for z =1 is always negative and an absolute value
greater than a certain finite magnitude.

For m = 0, the initial equation can readily be solved as follows:

a; 14
}’d—}zr='§'(§(y2)= (P(Z)
z (27)
y= 2 p(z)dz

1
y (z =1, m=O)=+\/2f p(z) dz> © 6(28)
0

As has been shown, as m increases, y (z = 1,m) decreases mono-
tonically and its derivative with respect to m is always finite.
Thus, there is always one and only one m, for which

y (z =1, my) = 0 (29)

This value m, for which both conditions (y = 0, z = O and

y =0, 2 = 1) are satisfied will give, by formulas (19), the required
flame velocity.

The practical method of finding m for a given @{z) and a
given arbitrary value m; consists of finding the corresponding
y (z =1, ml) by numerical integration of equation (20) from the
point z=0, y=0. If y (z=1, my) >0, another mp, mp > my,
is chosen and the numerical integration is again carried out; if

vy (z =1, m) <0, my< m; is chosen. Several values of y (z = 1)

are found for various m = my, mp, Mz and are chosen so that some of

6Tf the other sign of the root is taken, the sigh of m changes,
that is, the propagation is considered in the reverse direction but

all the physical conclusions remain valid.
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the values found for v (z = 1) are positive and some negative. By
laying off on a graph ¥y (z = 1l,m) as a function of m, the value
of my for which y (z = 1, my) = O is found by interpolation.

As & result, the velocity of combustion is obtained by the formule

£

where m_ represents a nondimensional number determined by the

function ¢ , that is, by the curve of ¢k/c as a function of H

(or of the temperature). The dependence of the flame velocity on the
absolute values of the reaction velocity and the heat conductivity
is given by the root of formula (30). In considering the dependence
on the composition of the mixture, it is necessary to take into
account that as is an important factor in the expressions for

¢ and @, because in passing from &(a,T) to @(H), ay entered
formula (16) relating a and H.

Uo =

3|5

By knowing my and the corresponding integral curve Yy (z,mo),
the law of distribution of H, T, and a in space as a_function of
x can also be found. For this determination, a single quadrature
is sufficient that can always be carried out numerically

k
E (HZ B HO) dz

= dH
- vy (2)
vy (z) ’\/h (H2 - HO) (@—E)m \/h (H2 - HO) (¢ %)m

~ a'lﬁ _k__C_n_l dz
=\ oo \k, /T (@)

where the subscript m denotes all the scalar magnitudes (see equa-
tions (192)). The expression under the radical represents a constant
magnitude having the dimension of a length and the expression in
parentheses is a nondimensional ratio depending on 2.

Y ERE V2 AN
VAR X émy<% C>y(ﬂ 52

(31)
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By the given condition, X = -~ @ for z =1 and for- X = +®,
z=0, Near z =1, y (2) =m (1 - z) that gives, after substi-
tuting the value m, the known Michelson solution

k
x=—2"1n (T - TO) + constant

CoPol%
(33)
kox
T = TO + constant ° exp YOI
oPoYo
Thus T %-TO only asymptotically as x - —®. The behavior of the
solution near 2z = O, that is, where the reaction ends, depends on
the form of y (z) near 2z = 0, which in turn is determined by the
expression of @ (z) for small =z.
If @ (z) increases near 2z = 0, according to the law
¢(z) = constant 2P
(34)
n 1
it is easy to show that
y (z)< & (35)
m
so that if the integral Jggz/ w(z) diverges, the integral
dzfy(z) likewise diverges. In the absence of diffusion and
heat conduction for an adiabatic reaction in a closed vessel,
the magnitude 2z varies according to the equation
dz . _ a o(z) (36)

at

where A = (l/ao) (¢x/c)y (c/kp) in the limit for small z approaches

a constant value. Thus, if the integral dz/®(z) diverges,

0
then, under adiabatic conditions, the chemical reaction comes to
an end only asymptotically at +t - &. Correspondingly, in consi-
dering the problem of flame propagation, the end of the reaction
a=0, T="T,, and H = H is reached only in the limit at an
infinite distance from the flame front.

2040
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The reverse case for small =z is considered.

n-1
y (z) = constent « z 2 -
- (37)
In this case,
@(z) = constant - 2"
(38)

n< 1l

Thus, in the case where the integral Jqdz/ p(z) is finite, the
0]

integral ‘]\dz/y(z) is likewise finite and converges near z = O.
O .

Physically, the chemical reaction concerned goes tqQ completion
after a finite time under adiasbatic conditions (in a closed vessel).
In the presence of diffusion and heat conduction, the chemical
reaction in the flame is likewise found to go to completion at a
finite distance from the flame front (more specifically, at a finite
distance from the place of most intense reaction). By computing

:I’dZ/Y(Z) (for example, arbitrarily giving x = O for that value

O .
of z for which @(2z) = maximum), % 1s found for which

X = X \

a=0

H=H, (39)
T = T3 }

w=0

The distribution of the concentrations and temperatures for x < Xy
is given by the integral (32). For any
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X >x )

a8 =

H=H, > (40)
T=T,

z=0 J

Thus, in the case of finite \I\dzﬁp, a singular point at x = Xy

0]
appears in the distribution of a(x), T(x), and H(x). At this singular
point, two different solutions, relations (32) and (40), meet and
the values of the magnitudes T, a, and H and their first deriv-
atives with respect to x are the same on both sides’. The second
or even higher derivative, however, may suffer a discontinuity,
particularly if

¢(2) = constant 2"
-l<«<n<«l

near 2z = 0,

2
1l -n

T, - T = constant (H, - H) = constant . a = constant (xk - X)
(41)
where from the conditions® imposed on the exponent, it follows that
the degree of (xk - x) is positive and greater than 1 so that
T, - T=0 and dT/dx = 0 for X -»x.

TThe first derivatives can have a discontinuity only for @ -»es.

8The condition n< 1 follows from the requirement of the
finiteness of fdz/q;; otherwise, as has been shown, there is no
0

singular point on the curve. The condition 1< n follows from
the reguirement of the finiteness of f z. As will be shown,
0

if this integral diverges, the magnitude m and the flame velocity
are infinite; however, n < 0 already leads to infinite velocity
of reaction for a-—» 0, which is physically unreal.
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The relations (32) and (40) thus give a complete solution sat-
isfying equation (18) and boundary conditions (18a). The fact that

" the boundary condition ~H'= Hy, 1is satisfied not only for x = e

but also for all x > xp does not contradict or prevent the solu- R
tion from being considered correct. The part played by \/\dz/ e(z)

. " Jo
was pointed out to the author by V. I. Skobelkin but the author cannot
agree with the opinion of Skobelkin that for the existence of =a
solution it 1s necessary that this integral diverge.

A soliution has been shown to exist only in the case where for
z=1, = 0, that is, in the case where the reaction velocity is O
in the initial mixture; for T = TO, a = a,. The solution has been
found under the still more rigorous condition (22). This result
is in no way an indication of the insufficient generality of the
theory and the inapplicability of the theory to any case of flame
propagation. On the contrary, this result entirely corresponds to
those physical conditions that must exist in order that a strictly
stationary process of flame propagation can occur. Not in every
system in which the process of a chemical reaction is thermodynamically
rossible will flame propagation be observed, that is, the propaga-
tion in the space of the region of chemical reaction. For this flame
propagation, it is necessary first of all that the heat given out
during the reaction accelerate the process of the reaction in the
neighboring layer. This condition, however, is still not suffi-
cient; it is also necessary that in the initial state, that is, in
the state in which the mixture is found at x = - e at an infinite
distance from the flame front at the initial temperature TO, the
reaction velocity is strictly equal to 0. If this condition is
not satisfied, a certain finite time may be found during which the
mixture, which at the initial instant 1s in the initial state, reacts
in the absence of external actions. This phenomenon can be illus-
trated bty imagining an explosive mixture in an infinitely long
pipe. If at the initial instant the mixture throughout is in the
initial state except at the origin of coordinates where the flame
is situated, the time required for the flame to reach a definilte
point in the pipe is equal to the distance of this point from the
origin of coordinates divided by the flame velocity. An element of
volume of the mixture with a finite reaction velocity at T, and
at a sufficiently long distance from the origin reacts before the
flame reaches it. As a result of the reaction as the flame is
propagated, the properties of the mixture situated ahead of the
flame front at infinity vary. Hence, for ¢(To,a0) # 0, the
required regime of steady flame propagation is actually physically
impossible and the absence of a solution of the equation in this
case entirely agrees with the physical picture.
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The peculiar mathematical difficulties arising in the consi-
deration of reactions for which @(z = 1) becomes O, for example,
proportional to (1 - z), is considered. 1In the case of heat propa-
gation, there is no significance in investigating the flame velocity
on the assumption that for T near TO, the reaction velocity is
proportional to (T - T.) because it is experimentally possible to
vary To so that the flame propagation does not change. If for
some Ty = Tyy, ¢ is set equal to constant (T - Tyy), then by this
assumption, the case previously considered, '¢(z > @) = 0 where
B <1, is obtained for Ty, < T ; for Tuz > Ty, 1) # 0 is
obtained, that is, the impossibility of a steady propagation. Thus,
in the heat propagation the assumption ¢ ~ (T - TO), ¢~(1 - 2)
is a random one and unsuitable.

From general molecular-kinetic considerations it follows that
at a low temperature near TO the velocity of the chemical reaction
is finite and different from O but very small. In this sense,
the existence of a steady flame propagation is an approximation
because ¢ (ao, TO) # 0, but a very good approximation because

@(ao, To) is very small. By the law of Arrhenius, the velocity
of the reaction at room temperature is of the order of e~ or e~
(for unity, the velocity at 3000°C was taken).

50

The curves of q/m and y as functions of z are shown
schematically in figure 4. For z =1, @ # 0 but for =z » Bl,
@ﬁn<z y. From a consideration of the equation, it follows that to
obtain a solution it is necessary to set 9(z) =0 for =z >8;
it is also easy to show that all numerical results (m, u, and the
curve T [x)) depend very little on the choice of R (fig. 4,8

or the larger B,) if @(z)«K 1 for z> B,.

Thus, although the operation itself of cutting off @P(z) at
Z >'B contains an arbitrary element in the choice of B, the cut-off
is required and arbitrariness in the choice does not lead to arbi-
trariness in the results. In this sense, the theory may be considered

satisfactory.

5. Isothermal Chain of Flame Propagation

The cut-off by means of multiplication by (1 - 2) in the heat
propagation of the flame is, as has been shown, a random one. In
considering chain and autocatalytic reactions, however, the assumption
that the velocity of the chemical reaction is proportional to the
concentration of the final product formed in the reaction is of
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interest. For example, if the transformation of A and B (their
concentrations are denoted by a and b) is assumed to proceed with
the collisions of the molecules of A and B according to the

. €quation R

A+B=2B

then, by assumming a constant temperature, the possibility of flame
propagation is obtained if the substance B transformed during the
reaction diffuses in the neighboring layers where the pure substance
A 1is contalned and results in a chemical reaction of the two sub-~
stances, in which the velocity constant is denoted by €. An equa-
tion identiecal to equation (20) is obtained with

d(a, B) =C - a + b N\

b = ao - a
Wz =2 (Q-2) o

In connection with the problem of the propagation of a chemical
reaction, this problem was considered in the unpublished works of
B. N. Skalov and O. M. Todes at the Institute of Chemical Physics
during 1937 and 1938. The results of this work are given in refer-
ence 12. Attention has also been called to the very interesting
work of A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov
(reference 13), which was published in 1937. In this work concern-
ing the equivalent biological problem, all the results of this
problem obtained later at the Institute of Chemical Physics are
presented in an accurate and clear form.

It has been shown that equation (20) for ¢(z) given in
equation (42) has a solution satisfying the boundary conditions
for all
m>m1=2
CDa 9(43)
2 0
p

u 2

9Solutions are also possible .for m « 2 but these solutions
require the existence of the region z > 1, a > 8y and b< O in

wvhich @ < 0, thus indicating their complete physical unreality.
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The physical meaning of these solutions has been clarified. For

¢ (z), given by formula (42), even in the absence of diffusion,

the initial distribution a and b in space may be given satis-

fying the condition a = a and b=0 for x- -, which gives

the propagation of the reaction in space. As quoted from reference 13:
"The apparent displacement of the substance from the left toward the
right will actually be brought about here by the increase of its
density at each point, entirely independent of the course of the
process at other points." The time of the reaction according to the
equation

Q

da
F=Cb=2a (ap - 2) (422)

©

depends logarithmically on the initial value ag-a that approaches
infinity for ao-a,—>O and a-» 8g- Given the distribution

a = a, (1 - e™) (for x < 0) (44)

that satisfies the condition a - gy X=> =@ a linear dependencé
of the reaction time on the coordinate is obtained, which leads to
an apparent displacement with constant velocity. The smaller n
is the greater is this velocity. By considering the nonstationary
problem that for the particular case (42) has the form
2,
Sa _pofa_Cy4 (a, - a)
2 P 0 (45)
ot ox

Kolmogorov, Petrovslkii, and Piskunov showed that as the time +t > o=,
the portion of the curve a(x, t) on which the initial part of the
change of a from 2 to O occurs is displaced in space with a

velocity approaching the minimum value that satisfies the steady-

state eguation
CDaO
us=2 5 (45a)

and the distribution a(x, t) approaches the solution of the
steady-state equation. The physical result is confirmed that in
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any case of local inflammation the reaction will be displaced

with a velocity aeccording to Eguation (452) and that larger velo-

According to Skalov, the limiting maximum value of the velo-
¢ity in the nonsteady problem may be found by elementary methods by
considering the transformed equation

(46)

" that agrees with equation (45) for ag-a K ag. Equation (46) is con-

sidered throughout for the initial conditions + = 0, a = ay except
for a small region near x = O, where a < ag. By setting

apt (47)

2 %)
ot ox
& (48)
2
X
Q= 4 - L 4Dt J
At
2
C X
a, -
a= a -A_]:._ep 0 4Dt (49)
0 T

The relation between x and t is found at the point at which
a=a' < ags that is, the law of displacement in space for the glven
concentration a'

X2

t -X_-1n (sy - 2') - In A+ % Int (50)

£a
p © 4Dt 2

107ne unreality of a greater u may also be established by the
method of a cut by considering the following relations: @ = O,
ag-a <¢s ®= Ca (ap-a), and ag-a> ¢ and by finding in this case
the only value of m and the corresponding value of u. For ¢€-—>0,

u—> 2 1/(c/p) Day.-
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In the limit as t —»wo,

2 _ 4DCayt?
P (51)
x =1t . 24[2C%
p
C
u=->2 -B Dao

which vas required to be shown. The substitution of (C/p) a(ag- a)
by (c/p) ao(ao- a) is an overevaluation and can give only an
increased but not a decreased velocity.

6. Approximate Formulas for Reactions Strongly
Dependent on Temperature

Considering the theory of the thermal propagation of a flame,
approximate expressions of the flame velocity are considered for
the case where the velocity of the reaction increases rapidly with
increasing temperature so that the function ¢ of equation (18)
(in which a and T are already expressed in terms of H) has a
sharp maximum for H near HE'

In equation (20), @(z) is shown to have a sharp maximum for
7z &K 1l. This case is of most interest for typical chemical reactions
of combustion.

According to assumption (22) that @(z) is different from O
only for z < B, a striet evaluation can be given of the upper and
lower limits of the magnitude m in such form that for R-=0, they
approach the same value that is the limiting expression for m for
small B.

The entire range of integration of z from 0 to 1 1is
divided into two parts: from O to 8 and from R to 1. 1In the
second part

@ 0

ay
dz

y = y(8) - m(z - B)

o (52)

y(1) = 0 = y(B) - m(1 - B)
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hence, it follows that

O  (53)

so that finding m reduces to determining y(B), where an exag-
gerated value of y(B) will give an exaggerated value of m. In
the first range, the exaggerated value 7y is obtained, rejecting

(S

the negative term my:

dy _ Wiax
Y3z =P =W < Vpax Tdz " (54)
$ (55)

where v is an auxiliary variable of integration and I denotes

g
the integral d[’wdv. The limits of integration may also be extended
0

to unity without markedly changing the integral because the case of
the function P is considered as having a sharp maximum at small
z < fB.

Thus, by taking

1
I-= j‘ pav (56)
o .

the upper limit of m is obtained

W< Wy = T L 5 SZI>(1+p8+...) foT for pK 1 (s7)
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In order to find the lower limit yﬁin cf y, the eguation

is written in the form solved for dy/dz and the dominating value

ymax (

z) from equation (55) is substituted on the right side for y.

m2m ., = \[EE

min

Thus, for small B, the upper and lower limits coincide and
give the limiting expression

(59)

m =4VEE =

Chemical kinetics generally lead to the eXpression

¢(&, T) = constant - ane'A/RT (60)

2040



”&@E}iég

i ;3‘::_:‘:?_%%;’{:;»_;;,&!‘?- .

RIS

NACA TM 1282 o5

which after transformation gives
e e XYY

p(z) = czle 1-Az
= k51
= 7T, (61)
T
0
)"—l-IT—2<l J

This expression may be approximately represented by making use
of the assumption of Frank-Kamenetskii (reference 17) in the form

¢(z) = ce™ 2" &N (62)

which in agreement with equation (59) (considering the fact that
X\ )
e K1), gives

(63)

Expressions (59) and (63) represent those approximate solutions

that are given in references 10 and 15 where the physicochemical
conseyuences of these results are given in detail. The less accurate
but clearer derivation of these formulas directly from equations (6)
or (18) in the coordinates x,T or x,H will not be repeated; as
has been shown, a strict mathematical analysis confirms the correct-
ness of this result. Expressions (60) and (62) do not become 0

for T = TO and z = 1l. The numerical computation shows, however,

that they are then very small (as exponents of large negative
numbers). The principal difficulties connected with this and the
method of overcoming them were previously explained. ZEvidently in
cutting off @(2z) in the region where @(z) <« 1, the part played by
the magnitude B (= 0 for z > B) will be played by the magnitude
p/kh, where M 1is of the order of several units.

In this mammer, expression (63) and corresponding formulas of
the previous work are correct in the limit when XA>1 (which
corresponds to the case B <K 1), that is, for

A (T - Tp)
—_— (64)
RTg >1
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as has been shown in references 10 and 15.

By the method of successive approximations, a correction of
the order l/XA, 1/X and their powers can also be obtained in
expression (63) (see reference 16 for an example by P. G. Smirnov).
In view of our present knowledge of the velocity of a chemical
reaction and a number of idealized assumptions (for example, the
absence of heat losses), however, such exactness is of no practical
interest.

7. Case of Mixture of Gases of Different Molecular Weights

Those cases where the identical relation (16) between the con-
centrations and the temperature does not hold will be briefly
considered.

Such a relation does not hold if:

a) Dcp ¥ k and 7y ¥ 0, which holds true in a mixture of gases
differing considerably in their molecular weights.

b) Several (parallel or successive) chemical reactions take
place in the flame and the relations between their equations and
the velocity are such that the concentrations of the different
chemical substances are not connected by algebraic relations.

In the first case, equations (6) and (7) must be considered.
A nondimensional transformation analogous to equation (19) is
again introduced. For exactness, ¢ = ®(ag, Tp) is taken for the

unit of reaction velocity; K = k(O,TZ) and C = c(O,TZ)the values
of the combustion products, are taken for the units of heat conduc-
tivity and heat capacity.

The nondimensional relative concentration o and the other
nondimensional magnitudes already employed are also introduced.
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. _ HZ - H-
Hz - Ho

_ k (aT) ¢ (a,T) Ca
pla,z) = C (2,1 Kmq’m ? (65)

. caz Cn (H2 - Hp)
TS TR & K @
mm

Cn (HZ - HO)
kKh¢m J

m= pu

H2 - Hb = ha.O

Expressed in these variables, the heat conductivity and- diffusion
are transformed into

d.
yEZ+my - ¢(az) =0 (e6)
z
d do d da
Ml S Tl A QGY"‘mYEE" p(ayz) =0 (67)
where
9 = ¢ (a,z) = 2%9
YDo (Hy - Hp)
= 0 Z) =
6 ((1., ) &T

The boundary conditions are z=0, y=0, a=0;, z=1, ¥y= 0, and
o = 1. The nondimensional magnitudes 9 and 6 characterize the
ratio of the diffusion to the temperature conductivity and the
thermodiffusion, respectively. In general, both magnitudes depend on
the composition and the temperature, that is, they depend on the
nondimensional variables o and 2z but they have neither singu-
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larities nor zeros in the entire range of variation of o and =z.
At all times, 4 >0; & >1 for a mixture containing a small amount
of a light gas (for example, H2 + O2 or HZ + Br2 in an insufficient

quantity of hydrogen). As a rule, in mixtures in which & >1,
T<0, and 6 < 0 (in a thermodiffusion equilibrium, a light gas
generally concentrates in the hot part of the vessel).

For 9=1 and 6 = 0, the system has the obvious solution
a = z, which was previously used. In the general case of arbitrary
¥, 6, and ll@, a method may be proposed analogous to that previously
described that consists of the numerical integration of the equations
for different m at the initial stream conditions for z = 0 and
the choice of interpolation of such a value of m for which the
solution satisfies the conditions for =z = 1.

The difficulty is that according to the general theory for the
integration of an equation of the second order for a, it is neces-
sary for z = 0 +to give, in addition to a = O, the derivative
da/dz. An explanation is also necessary as to whether for one m
both conditions a =1 and y = 0 will simultaneously be satisfied.

By dividing equations (66) and (67) by y and integrating, the

following equation is obtained for the solutions satisfying the con-
dition a =0, y=0 for z = 0O:

) - 6a(1) y(1) + ma(1) (eg)

da
=l-\9ya'z'

1
y(1) +m=f§ dz=((8y%%z
0

z=0

Hence, that value of m for which y(1) = 0 also satiifies
«(l1) =1 if y dofdz =0 for z =0 and for z = 1.

1lon ¢ are imposed the conditions @ = O for o =0, =0 in
the neighborhood of a =1, z =1, that is, §=0 for T, a near
TO, ag in the initial mixture as is required for the existence of the

propagation regime (see preceding discussion).

12The satisfying of y=0 for 2=0 and z =1 1s not suf-
Ticient for this because -da/dz may approach infinity.
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Near z =1, a =1, and y = 0 1in the region in which ¢
the equatlons reduce to the system

—n(1-2) . (69)
a da, d, dov
3z 6(1-2)3—2—329&_(1-2)*--&-2-—0)
By retaining the principal terms (for small 1 - z)l:5
3% (1__) 6
e l-zdz 1-z
i, (70)
o _9 constant (1 - z)‘9
dz 1_1
3
Thus, by whatever law the curve o(z) approaches the point z = 1,
for that value of m at which point y =
da, da _
y-—aTZ--m(l-z)Ei_
for z =1 also in the case (¥ <1) where dafdz->® for =z = 1.
For obtaining m, it is therefore sufficient to give
\
z=20
y=0
(71)
a=0
da
i Pl 0 )

13The values of ¢ and 6 in equation (70) are taken for z = 1,
C1,=l.
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and find the value of m for which the solution satisfies y = 0
for 2z .= 1; the conditions o =1 and 2z =1 will be automatically

satisfied.

By assuming ¢ for small o in the form @ = o V(z) where
v(0) 7‘ 0, the following relations are obtained for small z<«& 1l:

(o4 z for n> 1

o8

z
2 forn 1
3 < ) (72)

‘\/ 2 2 \2 2
a= 2 d+ (1—8) \V(O) + 2*(0) -—2—1!?(—0-5— forn=1

As 8 rule, in the combustion of gases, the function ¢ has the
form:

n "'A/(l_'z'}\-) o~ -ANz

¢(a, z) = const ae const afle (73)

where A = E/RTp > 1.

The coefficient A usually lies between 7 and 20 and
A= (TZ - TO)/TZ’ 1-A= TO/T2 generally lies between 1/4 and l/lO.
For z=0 and @ = O, the following relation is obtained for very

small z:

1
— <
7 < I<

@ increases with increasing =z Dbecause of increasing o but with

further increase in 2,9 rapidly (exponentially) drops. The region
of maximum @ near z = n/A)\« 1l is of principal effect for the

integral f Ppdz.
From estimates (57) and (58) previously made, it follows that

1l
nE Ypax € chpdz
0
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In the prineipal region near maximum ¢ and maximum y

my > 2 j‘wdz = fxfpﬁax< Prax = ¥ % ' (74)

whence, in the region of chemical reaction, the principal terms of
equation (67) are

(the terms rejected are less than the remaining terms in the ratio
n/Ah) therefore, it follows that in this region

\
S S W e PR ¢
v dz J dz dz
dou 1
ZT3 ’ (75)
P
o> 2
3 J

independent of the value of m determining the ratio of o and 2z
in the limit for very small =z.

The result given, valid in the limit for very large heat of
activation (greater than A), was pointed out by L. L. Landay.

For this limiting case, the following simple formula is obtained
for the flame velocity:

1
m = 2 S‘wdz
(0]
(76)
where
Z
¢ =9 (a, z2) = @a=73, 2Z)




32 NACA T 1282

Thus, in the case of a reaction with large heat of activation,

the velocity of which is & ~a®, the flame velocity computed by

the elementary theory (58) for Decp # k must be multiplied by
(Dcp/k)-n/z in order to obtain the true value; for ® s an arbitrary
function of a must be substituted in ¢
a=a for «1 77
0 Dep Hy - Hb Hy - Ho (77)

From the form of the distribution of a and T in space, conclusions
were drawn by the author concerning the instability of the plane wave
front relative to its curving for Dep> k (reference 15). The
physical properties of such mixtures were confirmed in the experimental
work of Drozdov and Zeldovich (reference 17).

8. FEBaquation of An Exothermal Chain Reaction

The case of several chemical reactions is very common. To de-
scribe the combustion of a mixture with chain kinetics, considering
at least two concentrations is necessary, namely those of the initial
substance a and the active centers and of the active intermediate
product b. In a number of papers by N. N. Semenov, his followers,
and the Institute of Chemical Physics a large number of active centers
were found to be formed in oxidation reactions, thus providing addi-
tional basis for expecting such to be the case in flames.

In certain cases, because of definite relations between the con-
centrations, the problem can be reduced to the case of a single reac-
tion. Thus, in the case of ozone in the presence of a rapid rever-
sible reaction, as considered by Lewis and von Elbe (reference 2),

a balanced thermodynamic relation is established between the concen-
trations of the active centers and the initisl substance. In a
rapid transformation of the initial substance into active centers
with the liberation of a large amount of heat, the velocity of the
flame propagation is determined by the single first reaction; the
succeeding slow transformation of the centers into the final sub-
stances does not affect the flame velocity. From the mathematical
point of view, these cases are trivial. In the most freguently
encountered nontrivial case, however, the transformation of a into
b generally occurs with a small liberation of heat with a large heat
of activation and autocatalysis of b; the transformation of D

into the final products is accompanied by the liberation of a large
amount of heat and depends little on the temperature. The system of
equations for an idealized typical chain reaction is used as an
example.
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Let the reaction be such that in a closed and heat- insulated
vessel, the equationa of kinetics a.nd. the cha.nges in temper&ture
have the form
\
p<2 = - By abeB/RT
db _ ~-E/RT 2
P 5% = Byabe” /RT _ g obe P (78)
daT 2
co & = nByb J
The equetions of propagation for Dep = ky v = 0, and for the addi-
tional simplifying assumptions, k = constant and ¢ = constant, in
nondimensional variables may be written as
dy
4, do da _ ~A1z
Y3 Vg t W g, - Bae 0 (80)
4,8,y B g2 "Mz
Y5, Vg tmy g5 - B + Bpae 0 (81)
where
B
B = oL o~E/RT
B2
To - T
a=2
0
b
p==—
0
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where ag is the initial concentration of the substance end the
remaining nondimensional variables are the same as previously_defined
with the following conditions: 2z =2 0, a =0, B =0, vy =0, ydﬂ/dz = 0,

ag _
v dz 0

The following equation is easily obtained

4 (S S‘LE_) (EOE 4a )_
ydzy(dz+dz 1)+ \gz;+5;-1)=09 (82)
where

a=2 -8

In this manner the two following equations are derived;

dy - 82 =
y 37 + my B~ = 0
d ag 4B 4 -Ayz
— —_ 4 Jhuns + B - 1% = Q
YTV YW L B B (z~B)e (83)

For 1< z31/Ay, set e fMZ=o.

At the present time, the method of finding the value of m in
such a system is not clear. 1In the most practical case of the com-
bustion of hydrogen with oxygen (in this case, all the constants
entering the equation may be assumed as known), the problem is made
st11l more complicated by the fact that Dep # k and that ¥ and

4

p are introduced in equations (83) so that it is necessary to con-
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sider a system of three equations. The principal difficulty, how-
ever, is in the behavior of the solutions in the neighborhood of.
gingular pointe and the conditions of the simultaneous satisfying

of the boundary conditions by all the variables. The numerical
integration of a system of ordinary differential equations for
different values of one parameter does not offer special difficulties.

SUMMARY

l. Equations are set up for heat conductivity and diffusion
considering the chemical reaction in the flame propagated in an

explosive mixture.

2. General properties of the temperature distribution in the
flame are presented.

3. Conditions are described that must be satisfied by the
chemical reaction so that a regime of flame propagation with constant

velocity would be possible.

4. Tor a definite relation between diffusion and heat conduc-~
tion, a method is given for determining the flame velocity from the
equation by numerical integration; the uniqueness of the method

is also shown.

5. An estimate in quadratures is given of the upper and lower
limits of the flame velocity; with increasing temperature dependence
of the velocity of reaction, both limits approach each other, tending
toward a value that was given in previous papers on the basis of
physical considerations.

6. A method of solution and the limiting value of velocity
for an arbitrary relatlion between diffusion and heat conduction

are given.

7. Bguations are set up for the flame propagation in a chain
reaction. '
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